Search results for "aromatic amino acids"
showing 10 items of 23 documents
Formation of 2-nitrophenol from salicylaldehyde as a suitable test for low peroxynitrite fluxes
2016
There has been some dispute regarding reaction products formed at physiological peroxynitrite fluxes in the nanomolar range with phenolic molecules, when used to predict the behavior of protein-bound aromatic amino acids like tyrosine. Previous data showed that at nanomolar fluxes of peroxynitrite, nitration of these phenolic compounds was outcompeted by dimerization (e.g. biphenols or dityrosine). Using 3-morpholino sydnonimine (Sin-1), we created low fluxes of peroxynitrite in our reaction set-up to demonstrate that salicylaldehyde displays unique features in the detection of physiological fluxes of peroxynitrite, yielding detectable nitration but only minor dimerization products. By mean…
Protein-bound tyrosine oxidation, nitration and chlorination by-products assessed by ultraperformance liquid chromatography coupled to tandem mass sp…
2015
Abstract Background Free radicals cause alterations in cellular protein structure and function. Oxidized, nitrated, and chlorinated modifications of aromatic amino acids including phenylalanine and tyrosine are reliable biomarkers of oxidative stress and inflammation in clinical conditions. Objective To develop, validate and apply a rapid method for the quantification of known hallmarks of tyrosine oxidation, nitration and chlorination in plasma and tissue proteins providing a snapshot of the oxidative stress and inflammatory status of the organism and of target organs respectively. Material and Methods The extraction and clean up procedure entailed protein precipitation, followed by protei…
De novo biosynthesis of simple aromatic compounds by an arthropod ( Archegozetes longisetosus )
2020
The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route—the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic …
Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium difficile toxins and Streptococcus…
1992
The homologous C-terminal repeats of Clostridium difficile toxins (ToxA and ToxB) and streptococcal glucosyltransferases appear to mediate protein-carbohydrate interactions at cellular binding sites with sugar moieties as substrates. A consensus sequence of 134 repeating units from gram-positive bacteria indicates that these repeats have a modular design with (i) a stretch of aromatic amino acids proposed to be involved in the primary carbohydrate-protein interaction, (ii) an amplification of this interaction by repetition of the respective sequences, and (iii) a second domain, not characterized, that is responsible for carbohydrate specificity.
Branched-Chain and Aromatic Amino Acids Are Associated With Insulin Resistance During Pubertal Development in Girls.
2018
Cross-sectional studies in children show branched-chain and aromatic amino acids are associated with insulin resistance, but whether these associations persist from childhood to adulthood is not known. This study aimed to assess whether circulating amino acids associate with insulin resistance during pubertal development.This was a 7.5-year longitudinal study from childhood to early adulthood. A total of 396 nondiabetic Finnish girls aged 11.2 ± .8 years at baseline participated in the study which was conducted at the Health Science Laboratory, University of Jyväskylä. Serum concentrations of glucose and insulin were determined by enzymatic photometric methods and amino acids by nuclear mag…
Metabolic relation of cyanobacteria to aromatic compounds
2018
Cyanobacteria, also known as blue-green (micro)algae, are able to sustain many types of chemical stress because of metabolic adaptations that allow them to survive and successfully compete in a variety of ecosystems, including polluted ones. As photoautotrophic bacteria, these microorganisms synthesize aromatic amino acids, which are precursors for a large variety of substances that contain aromatic ring(s) and that are naturally formed in the cells of these organisms. Hence, the transformation of aromatic secondary metabolites by cyanobacteria is the result of the possession of a suitable “enzymatic apparatus” to carry out the biosynthesis of these compounds according to cellular requireme…
Molecular characterization of hemocyanin and hexamerin from the firebrat Thermobia domestica (Zygentoma).
2008
Hexapods possess a tracheal system that enables the transport of oxygen to the inner organs. Although respiratory proteins have been considered unnecessary in most Hexapoda for this reason, we recently showed the presence of a functional hemocyanin in the stonefly Perla marginata. Here we report the identification and molecular characterization of a hemocyanin from Zygentoma (Thysanura). We obtained the full length cDNA of two distinct subunit types from the firebrat Thermobia domestica, and partial sequences of the orthologs from the silverfish Lepisma saccharina. The native T. domestica hemocyanin subunits both consist of 658 amino acids, but a signal peptide for transmembrane transport i…
Synthesis and Structure-Activity Relationships of Amino Acid Conjugates of Cholanic Acid as Antagonists of the EphA2 Receptor
2013
The Eph–ephrin system plays a critical role in tumor growth and vascular functions during carcinogenesis. We had previously identified cholanic acid as a competitive and reversible EphA2 antagonist able to disrupt EphA2-ephrinA1 interaction and to inhibit EphA2 activation in prostate cancer cells. Herein, we report the synthesis and biological evaluation of a set of cholanic acid derivatives obtained by conjugation of its carboxyl group with a panel of naturally occurring amino acids with the aim to improve EphA2 receptor inhibition. Structure-activity relationships indicate that conjugation of cholanic acid with linear amino acids of small size leads to effective EphA2 antagonists whereas …
Synthesis of phosphono dipeptides, inhibitors of cathepsin C
1998
Abstract Phosphono dipeptides containing glycine, glycylglycine or L-alanine at N-termini and racemic phosphonic acid analogues of aromatic amino acids, as well as racemic alicyclic aminophosphonates, exhibit moderate inhibitory activity towards cathepsin C. This activity is probably due to the binding of the phosphonate moiety by a positively charged part of the enzyme which is complementary to the carboxylate part of the synthetic dipeptide products of the enzymatic reaction.
Phenylalanine Hydroxylase Participation in the Synthesis of Serotonin and Pteridines in Drosophila melanogaster
1997
Abstract Phenylalanine hydroxylase is involved in the synthesis of serotonin and pteridines, probably catalysing the hydroxylation of tryptophan and a tetrahydropterin oxidase reaction, respectively. Supplementation of the wild-type Drosophila diet with either L-Phe or L-Trp induced a significant increase in the phenylalanine hydroxylase concentration, while L-Tyr supplementation had no effect. The level of serotonin in adult heads of the PAH-defective mutant Henna recessive-3 was significantly lower than that obtained for the wild-type strain. A 4-fold increase in the concentration of phenylalanine hydroxylase is observed during the pharate adult head development. It occurs in parallel wit…